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ficient is insensitive to the algebraic sign of a, (see [5]),
although positive and negative values of @, define differ-
ent refractive index profiles. The discussion in Section II
shows that linear terms cannot be accommodated and
therefore this class of profiles must be excluded from
those that can be analyzed by the evanescent wave method.
The same behavior with respect to @, oceurs for the slab
waveguide but here the different profiles corresponding to
positive and negative @; are merely reflections of one
another about the waveguide axis and therefore have the
same modal propagation coefficient. Thus, as shown in
[6], the asymmetric slab waveguide is included within the
framework of the evanescent wave theory.
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Excitation of Surface Waves and the Scattered
Radiation Fields by Rough Surfaces
of Arbitrary Slope

EZEKIEL BAHAR, SENIOR MEMBER, IEEE

Abstract-—Surface waves as well as lateral waves are excited when a
rough surface is illuminated by the radiation fields. In view of shadowing,
these terms of the complete field expansions contribute significantly to the
total fields when the transmitter or receiver are near the rough surface. In
this work explicit expressions are derived for the coupling between the
radiation fields and the surface waves which are guided at the irregular
interface between two media. In the analysis, the slope of the rough
surface is not restricted and the solutions for both the horizontally and
vertically polarized waves are shown to satisfy reciprocity and duality
relationships in electromagnetic theory. Special consideration is given to
Brewster angles of incidence and scatter and stationary phase techniques.
The full-wave solutions are also applied to random and periodic rough
surfaces.

I. INTRODUCTION

SING A full-wave approach that accounts for
shadowing, it has been shown that the radiation fields
scattered from rough surfaces vanish in a continuous
manner as the observer moves into the shadow region [4].
Thus when the transmitter or receiver are near the rough
boundary, the major contributions to the total fields come
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from the surface wave and the lateral wave terms of the
complete field expansions [1], [2].

In this paper the full-wave approach is used to de-
termine the excitation of the surface wave when the rough
surface is illuminated by the radiation field. In addition
the scattered radiation fields excited by an incident surface
wave are determined. The Kirchoff approach or the
Rayleigh hypothesis for instance, cannot be used to solve
this problem [3], [6]. Both vertically and horizontally
polarized waves are considered and the solutions are
shown to satisfy duality and reciprocity relationships in
electromagnetic theory.

For the convenience of the reader, the principal ele-
ments of the full-wave approach, including the complete
expansions of the fields, the exact boundary conditions
and the rigorous set of coupled differential equations for
the wave amplitudes (generalized telegraphist’s equations)
are summarized in Section II. In addition explicit expres-
sions for the coupling coefficients are provided.

In Section IIT second-order iterative solutions for the
scattered fields are presented. To remove the small slope
restriction inherent in the iterative solutions (while at the
same time retaining the relatively simple form of these
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Fig. 1. The scattered surface wave due to incident plane waves.

solutions) a transformation into a variable local coordi-
nate system, that conforms with the slope of the rough
surface, is introduced. Thus, the expression for the full-
wave solutions derived in this section are shown to be
invariant to coordinate transformations. Since upward
and downward scattering is accounted for in this analysis,
shadowing effects are also considered here (Section 1V).

Stationary phase conditions and coupling near the
Brewster angle are considered in Section V. Application
of the full-wave solutions to random and periodic rough
surfaces are given in Section VI.

II. FORMULATION OF THE PROBLEM

For horizontally stratified media the electromagnetic
fields can be expanded completely in terms of the radia-
tion term, the lateral and the surface waves of the media
[1], [7]. When the transmitter or receiver are far from the
irregular interface between two semi-infinite media for
instance, the scattered radiation field is the dominant term
in the full-wave expansion of the field. However, in shadow
regions, the radiation fields scattered by rough surfaces
vanish [4], and the principal contributions to the scattered
fields are due to coupling between the radiation fields and
the lateral and surface waves that are guided at the
irregular interface between the two media [3]. The contri-
butions of the surface and the lateral waves are also very
significant when the transmitter and receiver are just
below the earth’s surface. Coupling of electromagnetic
fields into and out of dielectric waveguides can also be
enhanced by a careful study of the coupling mechanism
between the radiation fields and the guided waves of the
dielectric structure at an irregularly shaped interface.

In this work, a full-wave method is used to determine
both the excitation of the surface waves by rough surfaces
that are illuminated by the radiation fields as well as the
radiation fields scattered by rough surfaces that are ex-
cited by surface waves. Using a local coordinate system
that varies with the rough surface boundary, restrictions
of the earlier iterative solutions are removed [3]. It is
assumed that in general, both the permittivity ¢,, and the
permeability p,, are different for the media (m=0,1)
above and below the irregular interface y =h(x) (see Fig.
1), and both horizontally and vertically polarized waves
are considered in this work.
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For simplicity, the interface y=~h(x), the permittivity
€,,, and permeability u, as well as the z-directed line
sources are assumed to be independent of the z axis. Thus,
the problem is two-dimensional and the scattered waves
are not depolarized by the rough surface. The time depen-
dence, exp(iwt), is factored out throughout this work and
the horizontally and vertically polarized waves are as-
sumed to be excited by z-directed electric and magnetic
line sources, respectively.

To assist the engineer who is not very familiar with the
full-wave approach used in this work, the principal steps
in the derivations are given and the solutions are cast in a
form that can be directly used to obtain numerical solu-
tions [3].

The principal features of the full-wave approach are: a)
use of a complete expansion of the fields; b) imposition of
the exact boundary conditions and the irregular interface;
¢) conversion of Maxwell’s equations into a set of gener-
alized telegraphist’s equations for the wave amplitudes; d)
use of rigorous mathematical procedures (thus, to avoid
term-by-term differentiation of the complete field expan-
sions, since the boundary (y=h(x)) between the two
media is irregular, use is made of Green’s theorems); ¢)
the solutions for the scattered fields are cast in a form that
can be directly used by the engineer and are simple to
interpret physically; f) use is made of a variable coordi-
nate system that conforms with the local features of the
rough surface. Thus the solutions are in a form that is
invariant under coordinate transformation and earlier re-
strictions on the slope of the rough surface are removed.

The transverse (y, z) field components for the vertically
polarized waves (denoted by the superscript V') are ex-
pressed completely in terms of the radiation term (integra-
tion with respect to the transform variable v,) the lateral
wave (integration with respect to v,) and the surface wave
term (denoted by the subscript s). Thus [1]

H,(x,y)=H)(x,y)+HI(x, y)+H!(x,y)
=3 H(x,0)4) (v, )

= [ e ) (0, y) oot [[THI(x, 0910, ) oy
+H](x,004(0,5) (2.1)

and
E(x,0)= 2 E)(x,0)Z"(v, ¥)¥)(v,y) (2.1b)

where the field transforms H,)(x,v) and E)(x, v) are for
n=0,1,s

Hy(x,0)= [ H,(x, 7)2"(0, )N (oW (0, 7) dy

(2.2a)

and

El(x,0)= [ E/(x, )N/ (0)0}(0, ) d. (2:20)
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Similarly, the complete expansions for the horizontally
polarized waves (denoted by the superscript H) are

E(x, )= 2 E(x,0)4 (v, ») (2.32)

and
Hy(x, y)= X H(x,0)Y*(0, y )4 (v, y) (2.3b)

in which the field transforms Ef(x,v) and H¥(x,v) are
for n=0,1, s

E(x,0)= [ E(x, )0, »)N )00, 7)
(2.4a)
P (x,0)= [ B(x, )N (0, 9) . (2.4b)

In the above expressions the symbol 3, denotes summa-
tion (integration) over the complete wave spectrum con-
sisting of the radiation fields, the lateral waves, and the
surface waves. The basis functions for the radiation, lateral
and surface wave terms are, respectively, y¢, ¢f and
¥ (P=V, H) [5]. The normalization coefficient for n=s is

NP(v)=1, P=V,H (2.52)
and for n=1,2
N/=R"(v)/2nIl(v), P=V,H (2.5b)

in which the transverse wave impedance and admittances
are

LS 7
. weg Zg(v)
Z(v,y)=—= ) u
ror) we,, prvsy =Z{(v)  (2.6a)
I (v,y)= - .
H v _[E=vf) (26b)
Y, (v, Y)= @ = | wpg 0 :
1 u
— =YH(v
il

The reflection coefficients with respect to the reference
surface y=0 are for P=V, H

RG"(v)=Rg(v)exp(i2vyh), RY*=RE(v)exp(—i2oyh).

2.7
The Fresnel reflection coefficients, R§(v), are
V(oVe — RV )< 2061 0160 _ MoCo—mCy 8
Rol0)==Ri(0) vge; o Cot+mCy (2.82)
and
Vb1 —Vito _ MG —0Cy
RH(v)=—RH(v)==> = . 2.8b
o(°) 1(°) Ooy+o1o  MCo+meC ( )
The modal equation for the surface waves is
1/RE(v,)=0. 2.9

The intrinsic impedance for medium m is n,,=(p,,/€,,)"/>,
Co and C, are the cosines of the angles between the y axis
and the wave normals in medium m=0 (y>h(x)) and
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medium m=1 (y <h(x)), respectively, (see Fig. 1)

v,=k,cos8,=k,C,, m=0,1 (2.10a)

in which k,,=w(p,,¢€,, )2 is the wavenumber for medium
m. The vector wavenumbers for the incident and the
scattered waves are, respectively,

ki=wa +d,a,=ki(Sia,—Cia)=ki7,, m=0,1
(2.10b)

and

kh=uwla, +vla,=ki(Sia,+Cla)=kial, m=0,1
(2.10¢)

in which C,, CJ, and S, S/ are the cosines and sines of
the angles between the wave normals and the y axis for
the incident and scattered waves and 7', and 7, are unit
vectors in the directions of the wave normals in medium
m=0,1.

Using the full-wave approach, the field transforms E”
and H are expressed in terms of the forward and back-
ward wave amplitudes

HP=al+bP EP=alxb?, P=V,H, n=0,1,s

2.11)
where the upper and lower sines are for P=¥ and H,
respectively. The generalized telegraphist’s equations are
obtained by substituting the complete field equations .1
—(24) into Maxwell’s equation for the transverse field
components, and using the orthogonality relationships
between the basis functions. Use is made of Green’s
theorems to avoid term-by-term differentiation of the
complete field expansions and the following exact
boundary conditions are imposed at the irregular boundary
y=h(x) between the two media (m=0,1) for vertically
polarized waves

H,} =0,
-

[ dah 1 9d
and for horizontally polarized waves

h+
e = 12
vdx = iwe dy [H.];- =0(2.122)
h"‘
[ I

[E,]F=0. (2.12b)

Thus Maxwell’s equations are transformed into the follow-
ing rigorous set of differential equations for the wave
amplitudes [2].

- %a,’,’(x, v)—iua,(x,0)= 2, SEA(n,n',v,v)al(x, )
+SpE(n,n’,v,0)Bl(x,0)+JF/2 (2.13a)
- -dixb,f’(x, v)+iubl(x,0)= 2 Sad(n,n’,v,v)al(x,v)

+Spp(n, n',0,0)b(x,0)—Jf /2 (2.13b)

in which the line source transforms are
o0

Fx,0)= [ J(x, p)NF(o) (o0, y) dy,
—

{ I=efor P=H

. (2.14
l=mfor P=V ( )



1002

The transmission and reflection scattering coefficients are,
respectively,

SEA(n,n',v,0)=Sa8(n, ', 0,0

N, (v) GP
= n,n,v,0)—G:(n,n, 0,0 2.15a
Z[N,,( LG8, 8,0)= 6,0, | @1150)
and
Sg(n,n’,0,0)=Sgi(n,n',v,v)
1| N/(v)
—| 2L G¥(n',n,v,0)+Gl(n,n, 0,0 2.15b)
[N,,’f(v’) ('m0, 0) + G, 0,0) | (
in which

IP(v', y)NE(v
| L)
v¥—v

2

0
. P
{\I/n’(v ’y) axay

Yr(v, )

h'}
(2.16)

- %zlfi(v’,y)a—itlzf(v,y)}

-

Using the differential equations and boundary conditions
for the basis functions ¢,7(v, y), it can be shown that

o= e+ o NG|

(2.17a)
and

dh
s ¥, 1) =| 5o u y)+—¢:( @l

(2.17b)

Thus it follows that

L-y—)N—(”—){ PUE(, ) (0, ¥)
02 v "

GH(n,n,v,v)= [
at
dh
P 9 4P “«
W)U o, y)” @)
In this work coupling between the radiation fields and the
guided surface waves are investigated in detail, thus for
n,n=0,s

GP(S70’ s> DI) = ‘P(f(v,’ h)‘l’sp( Uy h)

D2__012
Py s 2 ’ Py 2 ’, dh
’[Io(”)(vo.v“oosvl)_ll(”)(vls_vosvl)]d_ (2.192)
and
NP P, r, h P , h
(U) GP(O 5,0 ’ s) 0(D 2)4/5 Evs )
Ny(v) vy

] 9 (2.19b)

'[Ig(l’s)(vo UOsvl) 11(0 (01 DOsvll) dx
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Hence for vertically polarized waves

o (v, B)Y! (v, h)

2(u,—u')we,

Sp3(5,0,0,,0) =

dh

. [(u’us+v’100s)(€— - 1) +k3(1- p,)] e (2.20a)
and for horizontally polarized waves
‘I’OH(U/’ h)‘PH(v s h)
BA 509 b / = - 2
SHH(S Ds U) 2(us_u/)wu
’ 4 1 dh
. [(u us+vlvos)(“—’ - 1) +k2(1 —e,)] p (2.20b)

in which €,=¢; /¢, and p,=p, /¢, are the relative permit-
tivity and permeability, respectively.

The electric and magnetic line sources of intensities I,
(amps) and 1, (volts) located at (x,, y,) are expressed in
terms of the Dirac delta functions

J=Ja,=L8(x—x,)0(y—y)a,, I=e,m.
(2.21a)

Thus the source transforms (2.14) are
JP=18(x~xo) NI (0)Y (v, y,), I=e,mfor P=H,V.
(2.21b)

III. CouPLING BETWEEN THE RADIATION FIELDS
AND THE SURFACE WAVES WHEN THE SLOPE OF THE
ROUGH SURFACE IS SMALL-ITERATIVE SOLUTIONS

To obtain the first-order iterative solutions for the gen-
eralized telegraphist’s equations, the transmission and re-
flection scattering coefficients are ignored in (2.13). Thus,
the radiation field due to a magnetic line source for the

unperturbed case A=const. is given by [1]
1 iwe

Hy(x,y)= “—.—01—/;
2(2wikop,)

-[exp(—ikopd)'i'(%)1/2RK(U')CXP(—ikOD) (3.12)

in which the first term is the direct wave and the second is
the wave specularly reflected at the angle 6. Thus in
(3.1a)

vy =k, cos G} (3.1b)
and
pa=[(x=x0)+ (y=35)*]""?
1/2
D=[Cetxol+(r—3,)]". (3.1¢)
The incident wave at the origin is
) I iweg
Hy= ——"————exp(—ik¢p,) (3.2a)
® 22mikypy)? o
where
po=(x2+y3)". (3.2b)
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Similarly, the unperturbed surface wave for y >y, is given
by [1]

104 iweg
H(x,y)=-—F

us[ 1— l/ef]
-exp[ —iu,(x—x,) Jexp[ —ivo(y+y,)] (3.3)

in which v,, and v,, are derived from the modal equation
(2.9). Thus

Oos=koCog= —ko(n2/e2~1/€2)"?/(1-1/€2)"/
(3.4a)
(3.4b)

01,=k,Cy = —1,8,
and
u,=koSo,=ko(l—n2/€2)"*/(1-1/€2)"* (3.40)

where n, is the relative refractive index n,=(e,u,)!1/2 The
second-order iterative solutions for the wave amplitudes
are obtained on substituting the first-order solutions for
the wave amplitudes on the right-hand side of (2.13) and
solving the resulting equations. These solutions for the
wave amplitudes are substituted back into the complete
field expansions (2.1)-(2.4) to obtain the second-order
iterative solutions for the scattered fields. Thus the surface
wave due to the illumination of the rough surface

y=h(x), ~L<x<L (3.5)
by the incident radiation field (3.2) is
Hy= Gs'gVF;KV( Bos» 0(;)1(003’ b, b, L) (3.6)
where
Gr—— 21 iwegexp(—ikgpy) vo,(ivgs2L)
(@mikop)”?  u(1-1/2)
-exp[ —ij(;xusdx’]exp( —ivg,y) (3.7)
and

L (-1 Ci,Ci—So,Se | +(1—p,
EKV(005,06)=( /e,)[y,, 1s+1 0s 0] ( nu‘)‘

2Go,(Go+n,CH)
(3.8)
The relative intrinsic impedance is ,=17, /1, and
1(6,,,65, b, L)
- ﬁ _LLexp[ iko(C(;'h—S(;'x+ fo "8y, dx')] dx.
| (39)

The coefficient G,,” can be identified with the incident
radiation field (3.2) and the outgoing surface wave (3.3),
The coupling mechanism is represented by the coefficient
F%V and the integral I (3.9) over the rough surface A(x).
For the reciprocal problem in which the rough surface is
excited by a back travelling surface wave, the scattered
radiation field in the direction 6 is given by

H0s= G&Vszy(gof’ _00:)1(0({1 _00.5" h’ L) (310)
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in which
=21, iwegexp(—ikop) 0o (ivg,2L)
Grikep)® u(1-1/22)

X0
~cxp(—if usdx)exp(iUONyo) (3.11)
0

B8, —60,) = Fi6" (6,0, — )

vV _
GOs -

(3.12)
and
184, — o, k, L)

1 L ( x
= iko| CIh+S{x+ [ S, dx')]dx. 3.13
2L ‘[—L[ [1] Wt V] 0 '/(; 0s ( )

The coefficient GJ” is identified with the incident surface
wave and the scattered radiation field at a distance

1/2
p=(x2+y?)"2, (3.19)
Thus consistent with reciprocity (3.10) can be obtained
from (3.6) on making the following substitutions:

Po>Ps  X—Xg, V=Y, Oi>—8f. (3.15)

The corresponding solutions to the problem of coupling
between the radiation field and the surface wave for
horizontally polarized waves can be obtained directly
from the above results for vertically polarized waves by
invoking the duality relationships in electromagnetic the-
ory. Thus, the scattered surface wave excited by the
illumination of the rough surface by the incident horizon-
tally polarized radiation field is

E = GsIgHEvlgH(oos,%)I(aos’%’ h, L) (3.16)

in which GZ¥ and F2¥ are obtained from the expressions
for GJy¥ (3.7) and F,}¥ (3.8) through the following trans-
formations:

I,—>—1,, H>~E, p—se, esp, n,-1/q. (3.17)

Similarly, the scattered horizontally polarized radiation
field excited by a backward travelling surface wave inci-
dent on the rough surface is given by

Eo.=GEYFH(04, —8,,)1(84, — 0y, 1, L). (3.18)

The expressions for GHH FH and [ in (3.18) are related
to GYY, FYV, and I in (3.10) through the duality relation-
ships (3.17).

IV. FuLL WAVE SOLUTIONS WHEN THE SLOPE OF
THE ROUGH SURFACE IS LARGE

To remove the small slope assumption introduced to
obtain the iterative solutions presented in the previous
section and in order to retain the relatively simple form of
these solutions, a variable coordinate system that con-
forms with the local features of the rough surface is used
[4]. Thus the rough surface is regarded as a continuum of
elementary inclined strips of varying slope and height
rather than a continuum of elementary horizontal strips of
varying height. The contribution to the total scattered
surface wave from an elementary horizontal strip at x, y
of width dx’ is (3.6)
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of width dx’ is (3.6)
dH,g=GLY EH (B, B)exp{id! ()} o = Gl EY I (x)
(4.1a)
in which
& (x") =k0[ Cih—Six'+ f" S, dx”] . (4.1b)
0
The corresponding expression for dH,, due to scattering
by an inclined strip at (x, y) of length
di=(dx?+dy?)/*=(1+ (W) dx=dx/cos y
(4.2a)
and gradient
W =dh/dx=tany (4.2b)

is given by performing the following coordinate transfor-
mation into the local (variable) coordinates §, n (the 7 axis
is normal to the local tangent plane).

(4.3a)
(4.3b)

The incident and scatter angles with respect to the refer-
ence plane y =0, 4%, 8f are replaced by the local incident
and scatter angles with respect to the local tangent plane,
thus

§=xcosy+ysiny
n=—xsiny+ycosy -

Oo—>00" =05~
8f—00"=6{+v. (4.4a)

The corresponding angles for medium 1 (y <h)8} and
{" are given by Snell’s law

k,sin@]Y=ksin 05

k,sin@Y=k,sin4]". (4.4b)
Under the transformation (4.3) and (4.4)
Cé’n—Sé"£= C&h—Séx 4.5)
u,L(x)= f X/kOSOS dx” /cosy (4.6a)
0
usLR(x)=ka0Sosdx”/cosy . (4.6b)
0

Thus

&' (x)=dM(x)=ko(Coh—Sex’) +u,L(x"). (4.7)
The total surface wave due to the illumination of the
rough surface of arbitrary slope by the radiation field is
therefore

1 ,L i
Hs0= EZ f~LGs,6VEsI(;V( 00s’ 00)

dx’
cos ¥y

-exp iko( Cih— Six") +iu L (x") ] (4.8)
In the expression (4.8), the path length over the rough
surface from the origin to the scattering element at
x’, L(x"), is given by (4.6a) and in the expression for G}

(3.7), the path length from the origin to the receiver,
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Lg(x), is given by (4.6b). The expression for the full-wave
solution (4.8) is invariant to coordinate transformation.
The corresponding expressions for H,, E,,, E,, are ob-
tained from (3.10), (3.16), and (3.18) in a similar manner.
Thus for instance in (3.13)

¢f(x’)=k0[C({h+S({x’+fx'SOde”} (4.92)
0

is replaced by

M x")=ko(C{h+S{x) +u,L(x’)  (4.9b)

where L (x") is given by (4.6a). Similarly, in (3.1)
fxous dx”— xous dx”/cosy=u,Ly(x,) (4.10)
0

0
where Ly(x,) is the path length along the rough surface
from the source at x, to the origin.

The full-wave solutions derived in this section are valid
for

—7 /200 =0l —y<7/2, —n/2<0{" =8 +y<mu/2
(4.11)

thus both upward and downward propagating waves with
respect to the reference plane y =0 are accounted for in
this analysis. Only those regions of the rough surface that
are illuminated by the source or visible to the observer
contribute to the scattered fields. For plane waves inci-
dent at an angle 65, the shadow region extends from x! to

x4, where [4]
tany(x}) =h'(x})= —cot §; (4.12a)

and
xp—xi= [h(x’z) —h(x{)]/tany(x{). (4.12b)
Similarly, for an observation point in the direction 6,

the region of the rough surface extending from x{ to x§ is
not visible to the observer

tany(x{)=h'(x{)=cot §f (4.13a)
and

<f—x{=[ h(xf)~h(x{)] ftan(x{). (4.13b)

V. StATIONARY PHASE CONDITIONS AND COUPLING
AT THE BREWSTER ANGLE

In the expression for the scattered surface wave (4.8)
the phase #'7(x) is stationary when
d . . .
= Y(x)=ko[ (Cah'(x) = S§) +Sp,/cos ¥ |50, (5.1)
Substitute #'(x,)=tany, and §,,=siné,, into (5.1) to
get

k 0
cOs ¥,

[sin(y,—8§) +sin by, ] >0 (5.2)

Hence
(5.3)

Thus, as the local angle of incidence 6;Y approaches the
Brewster angle §f(R§—0,f—Reb,,) the phase ¢(x)

0(?] = 0(; - Ys—)aos
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tends to be stationary. However, when the local angle of
incidence 8" (and not ) [3] approaches the Brewster
angle F,5%(8,,,0,")—0. Thus, the major contributions to
the scattered surface wave do not necessarily come from
the neighborhood of the points where the phase 8%(x) is
stationary. It should be pointed out that the Kirchoff
approach does not account for coupling between the
radiation fields and the surface waves [3]. In a similar way
it can be shown that for the scattered radiation fields the
phase ¢/7(x) is stationary when

0fv=0f+v,——86,,. (5.4)

VI. RANDOM AND PERIODIC ROUGH SURFACES

In order to determine the statistical average of the

scattered surface wave, H , (4.8), it is necessary to know
the distributions of the random functions, A(x) and #’(x)
=tany(x). However, for a stationary random process
h(x) and h’(x) are uncorrelated [6]. Thus, the expected
value for H, is given by

<HVV = GS%VI’:'I(;V(OON 06)
s0 cosy

X (koCo)sine| ko L(Si—S,,)]  (6.1)
in which it is assumed for simplicity that L (x")=2x’. The
one-dimensional characteristic function is

x(koCl) = f_iw(h)exp(ikoc(;h)dh (6.2)

where w(h) is the distribution function for A(x). For
slightly rough surfaces, y—0 and ;

< Gio'Fig (60,5 0")

o D) o B 00 ). (6

Similarly, the small slope approximation for the variance
of Hy, is given by

. 1
D{H0) =[G F* (B0 B
L ,
. f_LeXP[ _iko"(Sé_So.v)]

: [Xz(koc(g’ _kocé) —x(kOCé)x*(kOCé)] dr
(6.4

in which the symbol * denotes the complex conjugate and
X is the two-dimensional characteristic function

Xz(kocci_kocé) = f_wf_mW(hl’ hy)

-exp| tkoCi(hy—h,) ] dh,dh, (6.5)

where W(h,, h,) is the joint distribution function of A,=
h(x,) and h,=h(x,) and r=x,—x,. The statistical aver-
age and the variance for the scattered radiation field due
to an incident surface wave H, are obtained in a similar
manner. Thus, consistent with reciprocity they can be
obtained directly from (6.1) and (6.4) on making the
substitutions (3.15). Similarly, the corresponding expres-
sions for the horizontally polarized waves, E,, and E,,,
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can be obtained by invoking the duality relationships
(3.17).

For an N element periodic rough surface of period 2L

h(x+2L)=h(x), ~NL<x<NL (6.6)

the scattered surface wave is obtained by multiplying the

single element scattered wave (—L<x<L) by the N
element array factor

E(0y,,65)= sin[ Nko(SgL~ SosLsL)]
/sin[ ko( SeL—So,LE)] (6.7)

where
Li=L(L). (6.8)
The array factor is maximum for
Reko(S¢L—Sy,LE)=mm, m=0,+1,+2, ...
(6.9a)
thus
Si= TR | Re(Sy,LE/L). (6.9b)

2L

The array factor for the scattered radiation field H, is
given by

F:{(o({’_00s)=1;:4(00s’0(§=—0({)‘ (6.10)

Thus it can be obtained from (6.7) by replacing S¢ by
—S8]. The scattered radiation fields are therefore maxi-
mum for

S{= 7R _Re(S,LE/L).

o (6.11)

VIIL

The contribution to the total fields from the first, sec-
ond, and third terms on the right hand side of (2.1) or
(2.3) are the radiation field, the lateral and the surface
waves, respectively. As the observer moves into the shadow
region, the contribution from the first term (the radiation
field) vanishes in a continuous manner [4]. Thus, the
surface waves and the lateral waves that are guided at the
interface between two different media contribute signifi-
cantly to the total fields when the transmitter or receiver
are near the rough interface [3]. In this work the surface
wave excited by an incident radiation field as well as the
scattered radiation fields excited by an incident surface
wave are derived using a full-wave approach [1], [2]. The
Kirchoff approach or the Rayleigh hypothesis for ins-
tance, cannot be applied to this problem [3], [6].

To remove the earlier restrictions on the slope of the
rough surface, [3], a transformation to a variable, local
coordinate system has been used. In addition both € and p
are assumed to be different for y>h and y <h. Both
vertically and horizontally polarized waves are considered
here and the results are also applied to random and
periodic rough surfaces. The solutions are shown to satisfy
duality and reciprocity relations in electromagnetic theory
and they are invariant to coordinate transformations. Since
the full-wave approach accounts for upward and down-

CONCLUDING REMARKS
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ward scattering, shadowing effects are also considered in
this work.

It is shown that the phase ¢/’(x) in (4.5) is stationary
when the local angle of incidence #°Y=80—+y approaches
the Brewster angle. However, at this angle, F¥(8,,, 6;)—0.
Thus the major contributions to the scattered surface
waves H,, do not necessarily come for the neighborhood
of the stationary phase points.

The full-wave approach presented here may also be
used to determine the coupling of electromagnetic fields
into and out of dielectric waveguides with irregular
boundaries.

ACKNOWLEDGMENT

This manuscript was prepared by Mrs. E. Everett. The
author wishes to thank D. E. Barrick for stimulating
discussions.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 9, SEPTEMBER 1980

REFERENCES

[1] E. Bahar, “Generalized fourier transforms for stratified media,”
Can. J. Phys., vol. 50, no. 24, pp. 3123-3131, 1972,

[2] E. Bahar, “Radio wave propagation in stratified media with nonuni-
form boundaries and varying electromagnetic parameters, full-wave
analysis,” Can. J. Phys., vol. 50, no. 24, pp. 3132-3142, 1972.

[3] E. Bahar, “Coupling between guided surface waves, lateral waves
and the radiation fields by rough surfaces—full-wave solutions,”
IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 923-931,
Nov. 1977.

[4] E. Bahar, “Full-wave solutions for the scattered radiation fields
from rough surfaces with arbitrary slope and frequency,” IEEE
Trans. Antennas Propagat., vol. AP-28, pp. 11-21, Jan. 1980.

[5] E. Bahar and G. Rajan, “Depolarization and scattering of electro-
magnetic waves by irregular boundaries for arbitrary incident and
scatter angles,” IEEE Trans. Aniennas Propagat., vol. AP-27, pp.
214-225, 1979.

[6] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic
Waves from Rough Surfaces, New York: Pergamon, 1963.

[7} L.M.Brekhovskikh, Waves in Layered Media, New York: Academic,
1960.

Comparative Testing of Leaky Coaxial Cables
for Communications and Guided Radar

DANIEL J. GALE, MEMBER, IEEE, AND JOHN C. BEAL, MEMBER, IEEE

Abstract—Leaky coaxial cables are finding increasing use in communi-
cations systems involving mines, tunnels, railroads, and highways, and in
new obstacle detection, or guided radar, schemes for ground transportation
and perimeter surveillance. This paper describes the theory and operation
of a new laboratory testing technique for these leaky cables based on a
novel form of cavity resonator. The technique yields highly consistent and
repeatable results that usefully assist in the prediction of the performance
of full-size systems, from a simple test on a small sample of cable in a
laboratory setting.

I. INTRODUCTION

A. Leaky Coaxial Cables

EAKY COAXIAL cables are generating increasing
interest as a means of providing continuous-access
guided communications (CAGC) in tunnels and mines,
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and in guided ground transportation systems [1]-[3]. Many
different types are currently being marketed, or tested
experimentally, and a selection is shown in Fig. 1, with the
designations as used throughout this paper as described in
Table 1. Also included is conventional twin feeder, Fig.
1(g), to draw attention to the major characteristics shared
by all the types illustrated. They are all open electromag-
netic waveguides in which the signal energy is guided
along a prescribed linear route, with the fields being
confined both inside the cable and outside it, within its
immediate vicinity, thus enabling signals to be coupled
into immediately adjacent mobile communications units.

With the exception of the twin feeder, all these leaky
cables are coaxial in form and include a partially open
outer conductor.

In all these cases where periodic holes or slots occur,
the spacing is very much less than a wavelength and all
the cables illustrated act as slow-wave open guiding struc-
tures or surface waveguides [4].

B. Guided Radar

A vast amount of work on surface waveguides for
railroad communications has been done in Japan and
elsewhere over many years and some of the earlier work
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