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ficient is insensitive to the algebraic sign of al (see [5]), [2]

although positive and negative values of al define differ-

ent refractive index profiles. The discussion in Section II [3]
shows that linear terms cannot be accommodated and

therefore this class of profiles must be excluded from
[4]

those that can be analyzed by the evanescent wave method. [5]
The same behavior with respect to al occurs for the slab

waveguide but here the different profiles corresponding to
[6]

positive and negative al are merely reflections of one

another about the waveguide axis and therefore have the [7]

same modal propagation coefficient. Thus, as shown in

[6], the asymmetric slab waveguide is included within the $;

framework of the evanescent wave theory.
[10]
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Waves and the Scattered
by Rou[gh Surfaces
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EZEKIEL BAHAR, SENIOR MEMBER, IEEE

A&mct-Surface wavea as weff as Iateraf wavea are exalted when a

rough surface is Muninated by the radiation fields. In vfew of ahado~
these terms of the complete field expansions contribute sf@ieantly to the
totaf fields when the transndtter or receiver are near the rough surface. In
this work explidt expressions are derived for the eoupffng between the
radiation fields and the surface waveR which are guided at the frreguk
interface between two media. In the andys@ the slope of the rough
surface fs not reatrfcted and the solutions for both the horfrontafly and
Vertfdy ftofarired WaVt?5 arS ShOWll to SatfSfy rSdP~tY and ~ty

refatiomfdpca in electromagnetic theory. Speciaf conafderation is given to
Brewster angfea of inddence and scatter and stationary phase tedndqoea.

The fufl-wave solutions are dao applied to random and periodfc rough
surfacH.

I. INTRODUCTION

u SING A full-wave approach that accounts for

shadowing, it has been shown that the radiation fields

scattered from rough surfaces vanish in a continuous

manner as the observer moves into the shadow region [4].

Thus when the transmitter or receiver are near the rough

boundary, the major contributions to the total fields come
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from the surface wave and the lateral wave terms of the

complete field expansions [1], [2].

In this paper the full-wave approach is used to de-

termine the excitation of the surface wave when the rough

surface is illuminated by the radiation field. In addition

the scattered radiation fields excited by an incident surface

wave are determined. The Kirchoff approach or the

Rayleigh hypothesis for instance, cannot be used to solve

this problem [3], [6]. Both vertically and horizontally

polarized waves are considered and the solutions are

shown to satisfy duality and reciprocity relationships in

electromagnetic theory.

For the convenience of the reader, the principal elle-

ments of the full-wave approach, including the complete

expansions of the fields, the exact boundary conditions

and the rigorous set of coupled differential equations for

the wave amplitudes (generalized telegraphist’s equations)

are summarized in Section II. In addition explicit expres-

sions for the coupling coefficients are provided.
In Section III second-order iterative solutions for the

scattered fields are presented. To remove the small slc}pe

restriction inherent in the iterative solutions (while at the

same time retaining the relatively simple form of these
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I
Fig. 1. The scattered surface wave due to incident plane waves.

solutions) a transformation into a variable local coordi-

nate system, that conforms with the slope of the rough

surface, is introduced. Thus, the expression for the full-

wave solutions derived in this section are shown to be

invariant to coordinate transformations. Since upward

and downward scattering is accounted for in this analysis,

shadowing effects are also considered here (Section IV).

Stationary phase conditions and coupling near the

Brewster angle are considered in Section V. Application

of the full-wave solutions to random and periodic rough

surfaces are given in Section VI.

II. FORMULATION OF THE PROBLEM

For horizontally stratified media the electromagnetic

fields can be expanded completely in terms of the radia-

tion term, the lateral and the surface waves of the media

[1], [7]. When the transmitter or receiver are far from the

irregular interface between two semi-infinite media for

instance, the scattered radiation field is the dominant term

in the full-wave expansion of the field. However, in shadow

regions, the radiation fields scattered by rough surfaces

vanish [4], and the principal contributions to the scattered

fields are due to coupling between the radiation fields and

the lateral and surface waves that are guided at the

irregular interface between the two media [3]. The contri-

butions of the surface and the lateral waves are also very

significant when the transmitter and receiver are just

below the earth’s surface. Coupling of electromagnetic

fields into and out of dielectric waveguides can also be

enhanced by a careful study of the coupling mechanism

between the radiation fields and the guided waves of the

dielectric structure at an irregularly shaped interface.

In this work, a full-wave method is used to determine

both the excitation of the surface waves by rough surfaces

that are illuminated by the radiation fields as well as the

radiation fields scattered by rough surfaces that are ex-

cited by surface waves. Using a local coordinate system

that varies with the rough surface boundary, restrictions

of the earlier iterative solutions are removed [3]. It is

assumed that in general, both the permittivity Cn and the

permeability pm are different for the media (m= O, 1)

above and below the irregular interface y = h(x) (see Fig.

1), and both horizontally and vertically polarized waves

are considered in this work.

For simplicity, the interface y= h(x), the permittivity

●~, and permeability pm as well as the z-directed line

sources are assumed to be independent of the z axis. Thus,

the problem is two-dimensional and the scattered waves

are not depolarized by the rough surface. The time depen-

dence, exp(i~t), is factored out throughout this work and

the horizontally and vertically polarized waves are as-

sumed to be excited by z-directed electric and magnetic

line sources, respectively.

To assist the engineer who is not very familiar with the

full-wave approach used in this work, the principal steps

in the derivations are given and the solutions are cast in a

form that can be directly used to obtain numerical solu-

tions [3].

The principal features of the full-wave approach are: a)

use of a complete expansion of the fields; b) imposition of

the exact boundary conditions and the irregular interface;

c) conversion of Maxwell’s equations into a set of gener-

alized telegraphist’s equations for the wave amplitudes; d)

use of rigorous mathematical procedures (thus, to avoid

term-by-term differentiation of the complete field expan-

sions, since the boundary (y= h(x)) between the two

media is irregular, use is made of Green’s theorems); e)

the solutions for the scattered fields are cast in a form that

can be directly used by the engineer and are simple to

interpret physically; f) use is made of a variable coordi-

nate system that conforms with the local features of the

rough surface. Thus the solutions are in a form that is

invariant under coordinate transformation and earlier re-

strictions on the slope of the rough surface are removed.

The transverse (y, z) field components for the vertically

polarized waves (denoted by the superscript V) are ex-

pressed completely in terms of the radiation term (integra-

tion with respect to the transform variable 00) the lateral

wave (integration with respect to o ~) and the surface wave

term (denoted by the subscript s). Thus [1]

Hz(x, y)= HJ(x, y)+ H~(x, y)+ H.~(x, y)

=2 H:(X,0)*:(%Y)

=jmHr(x2.)4r(.> Y)d.o+JwHr(x>.)4r(oj Y)@
o 0

+H,v(% U)+,v(w Y) (2.la)

and

J!?,(X, o)= ~ ~~(x, O)ZV(O, y)+:(o, y) (2.lb)
n

where the field transforms Hmv(x, u ) and E.v(x, o) are for

n=o, l,s

Hn(x, v)=fm Hz(x, y)zv(o, y) Nnv(o)+:(o>Y)@
–CO

(2.2a)

and

J?~(X, u)=~~ ~Y(X, v)~.v(o)+~(o, y)d. (2.2b)
—m
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Similarly, the complete expansions for the horizontally

polarized waves (denoted by the superscript H) are

E=(X, y)= ~ E:(x, U)+:(o,y) (2.3a)
n

and

~y(X, Y)=~~:(X, V)yH(O,Y)+:(O,y) (2.3b)
n

in which the field transforms 11.~(x, v) and H~H(x, o) are

forn=O,l, s

In the above expressions the symbol X. denotes summa-

tion (integration) over the complete wave spectrum con-

sisting of the radiation fields, the lateral waves, and the

surface waves. The basis functions for the radiation, lateral

and surface wave terms are, respectively, I#S, +: and

t~(l’= V, H) [5]. The normalization coefficient for n =s is

I&’(u)=l, P= V, H (2.5a)

and for n= 1,2

N:= R:h(o)/29rl:(.)> P= V, H (2.5b)

in which the transverse wave impedance and admittances

are

[

u
— =2:(0)
UC.

Z:(o, y)=+=
@en & =z~(tl) (2.6a)

.

[

u
q~(o, y)= ~ = — = Yo~(o)

apo
(2.6b)

‘Pn

& = Yp(o)

The reflection coefficients with respect to the reference

surface y = O are for P= V, H

Rfh(tJ)=R~(u)exp(i200h), R~~=R~(o)exp(–i200 h).

(2.7)

The Fresnel reflection coefficients, ll~(u), are

and

Rf(u)= –Rff(u)= ‘Opl–o’pO= ‘lcO–qOc’. (2.8b)
Oopl +o#o ‘I& + %cl

The modal equation for the surface waves is

l/R;(o,)=o. (2.9)

The intrinsic impedance for medium m is q~ = (p~/c.)112,

Co and Cl are the cosines of the angles between they axis

and the wave normals in medium m= O (y> h(x)) and

medium m= 1 (y< h(x)), respectively, (see Fig. 1)

Vm = k~cos fl~ = kwC~ , m=O, l (2.10a)

in which km== u (p~c~ )1/2, is the wavenumber for medium

m. The vector wavenumbers for the incident and the

scattered waves are, respectively,

~~=uiZX+o;dy=k;( S; ZX-C;ZY) k’ iii‘mm~ m=O, l

(2.10b)

and

~~ = Uf~x + u~tiy = k~(S@X + C;iiY ) = k;fl; , ln=o, l

(2.IOC)

in which C~, C~, and S:, S~ are the cosines and sines of

the angles between the wave normals and the y axis for

the incident and scattered waves and fi~ and ii; are unit

vectors in the directions of the wave normals in medium

m=O, l.

Using the full-wave approach, the field transforms E:

and HnP are expressed in terms of the forward and back-

ward wave amplitudes

H~=a~kb~, E~P=a~7bp n? P= V,H, n=o, l,s

(2.11)

where the upper and lower sines are for P= V and H,

respectively. The generalized telegraphist’s equations (are

obtained by substituting the complete field equations (2,.1)

-(2.4) into Maxwell’s equation for the transverse field

components, and using the orthogonality relationships

between the basis functions. Use is made of Green’s

theorems to avoid term-by-term differentiation of the

complete field expansions and the following exact

boundary conditions are imposed at the irregular boundmy

y= h(x) between the two media (m= O, 1) for vertically

polarized waves

I
dh~ I

E+
y z: J

—~Hz “ =0, [Hz]~~=O(2.12a)
iuc ay ~.

and for horizontally polarized waves

[ 1Hall_ 1 & ‘+ o=>
Ydx

[ Ez];~=O. (2.121b)
iup ay ‘ ~.

Thus Maxwell’s equations are transformed into the follow-

ing rigorous set of differential equations for the wave

amplitudes [2],

- ~a~(x, u)–iua~(x, 0)= ~ S#$(n, n’, o, o’)aj(.x, 0’)
n’

+S::(n, n’, U, o’)b;(x, u)+J:/2 (2.13Et)

– $b~(x, u)+iub~(x, 0)= ~ Sj$(n, n’, 0, o’)aj(x, u’)
n’

+S$f(n, n’, o, d)b;(X, 0)–~f/2 (Z.lsb)

in which the line source transforms are

J:(x, v)= Ja’4(x,Y)~:(~)#;(u> Y)@>—m

[

l=efor P=H
l=mfor P=V.

(2.14)
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The transmission and reflection scattering coefficients are,

respectively,

S:j?(n, n’, o,ll’)=s$:( n,n’, o,o’)

[

1 N:(v) ~
.— —G (n’, n,tI’, u)-@(n, ?z’,v,o’)

2 ~:(o’)
1

(2.15a)

and

S$:(n, n’, o,v’)=s::(n, n’, v, o’)

[ 11 ‘~(o)Gp(n’, ~,o’, v)+@’(n, n’, u,d) (2.1%)=——
2 NJJo’)

in which

(o +;(o’jy) +&:(w)

)1

h+

–;+$(O’>Y);+:(O>Y) . (2.16)
h-

Using the differential equations and boundary conditions

for the basis functions tj~(o, y), it can be shown that

Hence for vertically polarized waves

[ () 1. (Z4’U.+UjVo.) ~ -1 +k~(l -P,) ~ (2.20a)
r

and for horizontally polarized waves

“[s (~r) ‘1(U’U +t+oo,) L -1 +/%;( 1-6 ) : (2.20b)

in which 6,= ●1/cO and p,= p ~/eO are the relative permit-

tivity and permeability, respectively.

The electric and magnetic line sources of intensities 1=

(amps) and 1~ (volts) located at (xO, yO) are expressed in

terms of the Dirac delta functions

.7=.@z=I#(x–xo) 8(y–yo)zz, l=e, m.

(2.21a)

Thus the source transforms (2. 14) are

J:= Z18(X– XO)N:(0)+:(0, ye), l=e, mfor P=H, V.

(2.21b)

[ 1
++:(0,h)= ;+:(0,y)+ +:(v, y): _ III. COUPLING BETWEEN THE RADIATION FIELDS

y–h

(2.17a)
AND THE SURFACE WAVES WHEN THE SLOPE OF THE

ROUGH SURFACE LS SMALL-ITERATIVE SOLUTIONS

and

*+:(0, h)=

[

&+:(o, y)+ 1-&:(o,y):.~=h
(2.17b)

Thus it follows that

In this work coupling between the radiation fields and the

guided surface waves are investigated in detail, thus for

n,n’=O, s

and

~sp(v ) p
—G (O, S,V’,V, )=

IP;(o’, ~)l:(v., h)

N:( V’) v
f2

— v;

o[I:(vJ(v&%o#; )-If’(v.)(v;’-vo#l; )]:. (2.19b)

To obtain the first-order iterative solutions for the gen-

eralized telegraphist’s equations, the transmission and re-

flection scattering coefficients are ignored in (2.13). Thus,

the radiation field due to a magnetic line source for the

unperturbed case h= const. is given by [1]

I~iaeO
HO(X, y)=

2(2mikOp~)1’2

[ ()Pcj ‘/2 v ,
. exp(–ikOp~) + ~ RO(V )exp( – ikOD)

1
(3.la)

in which the first term is the direct wave and the second is

the wave specularly reflected at the angle 13J. Thus in

(3.la)

u:= k. Cos ej (3.lb)

and

p,j=[(x-~Ll)2+ (y-y~)2]l’2

D=[(x+xo)2+(y–yo) ql’2. (3.lC)

The incident wave at the origin is

I~iucOH;= exp( – ikopo) (3.2a)
2(2~ikOpO)1’2

where

po=(x; +y;)”2. (3.2b)
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Similarly, the unperturbed surface wave for y >yO is given in which

by [1] –21JocOexp( – zi%Op) uos(~OOS2~)

Imvo,icwo
G~v= . —

H,(X, y)= – (2wikop)’i2 U,(l–l/e:)
zf.[l -l/+]

.exp[ –iu$(x–xo)]exp[ –ivoJY+YO)] (33)
exp(-iJxOudx)exp(ioo,yO) (3.11)

in which Vo, and o ~$are derived from the modal equation

(2.9). ThUS and

qy(e(f, -00,)=qp’(o.,, -0{) (3.12)

00s =koCo$= –ko(n:/c; – l/c;) l’2/(1 – 1/+1’2 l(eJ, –80,, fi, L)

vl$=klC1, = ‘Vo&,

(3.4a) 1 L

J[(

x

‘= ..L
iko C/h+ S(X +

(3.4b) J )]
So~dx’ dx. (3.13)

o

and

u,=koSo~=ko(l –n;/#’2/(1 – 1/+1’2 (3.4c)

where n, is the relative refractive index n,= (erpr)l/z. The
second-order iterative solutions for the wave amplitudes

are obtained on substituting the first-order solutions for

the wave amplitudes on the right-hand side of (2.13) and

solving the resulting equations. These solutions for the

wave amplitudes are substituted back into the complete

field expansions (2. 1)–(2.4) to obtain the second-order

iterative solutions for the scattered fields. Thus the surface

wave due to the illumination of the rough surface

y=lz(x), –L<x<L (3.5)

by the incident radiation field (3,2) is

H=o= G~~vF$;v(Oo~,19:)I(L90$,& h, L) (3.6)

where

vv is identified ~th the incident SurfaceThe coefficient Go.

wave and the scattered radiation field at a distance

p=(x*+y*)l’2. (3.14)

Thus consistent with reciprocity (3. 10) can be obtained

from (3.6) on making the following substitutions:

PO-+-P9 x-w), .Y+yo, 0;+’ – e{. (3.15)

The corresponding solutions to the problem of coupling

between the radiation field and the surface wave for

horizontally polarized waves can be obtained directly

from the above results for vertically polarized waves by

invoking the duality relationships in electromagnetic the-

ory. Thus, the scattered surface wave excited by the

illumination of the rough surface by the incident horizon-

tally polarized radiation field is

~so==@WY(eos~ @X@os$ 8:> h, L) (3-W

21~iacoexp( – ikopo) voJ(ioo,2L) in which G,fH and F$$Hare obtained from the expressions
G~v= – for G/#’ (3.7) and F$~v (3.8) through the following trans-

(27rikopo)1i2 U,(l– l/c:) formations:

exp[-iixu$d~’]exp(-i~o.~)(37) ~m+-~e$‘7+-E>‘+’ ‘+P ‘r+l/qr‘317)
Similarly, the scattered horizontally polarized radiaticm

and field excited by a backward traveling surface wave inoi-

(1 - l/+[A.clJcHA4] +(1 -Pr) dent on the rough surface is given by-

q;v(eo., e;)=
2C0,(C: + qrc; ) Iio$= G#H~~H(/3& –40$)1(0{, –6.,, h, L). (3.18)

(3.8)

The relative intrinsic impedance is qr = q ~/q. and

~(00,, f?&h,L)

‘;~::p[iko(c~h-$x+~xso.dx’)]dx.

(3.9)

The coefficient G,!$’ can be identified with the incident

radiation field (3.2) and the outgoing surface wave (3.3),

The coupling mechanism is represented by the coefficient

F=~v and the integral 1 (3.9) over the rough surface h(x).
For the reciprocal problem in which the rough surface is

excited by a back traveling surface wave, the scattered

radiation field in the direction /3{ is given by

Ho= = G~vFo~v( 8{, – O.,)1(8{1 – 8..> h,L) (3.10)

The expressions for G~H, FofH, and I in (3.18) are related

to G{,v, Fo~v, and I in (3.10) through the duality relation-

ships (3. 17).

IV. FULI. WAVE SOLUTIONS WHEN THE SLOPE OF

THE ROUGH SURFACE IS LARGE

To remove the small slope assumption introduced to

obtain the iterative solutions presented in the previous

section and in order to retain the relatively simple form of

these solutions, a variable coordinate system that con-

forms with th~ local features of the rough surface is used

[4]. Thus the rough surface is regarded as a continuum of

elementary inclined strips of varying slope and height
rather than a continuum of elementary horizontal strips of

varying height. The contribution to the total scattered

surface wave from an elementary horizontal strip at x, y

of width dx’ is (3.6)
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of width dx’ is (3.6) LJx), is given by (4.6b). The expression for the full-wave

solution (4.8) is invariant to coordinate transformation.

dff~o = G~~vF,~v(O.,, tl~)exp{i$i(x’) } # E G~vF,~vdl(x’) The corresponding expressions for I&, E,O, EO~are ob-

tained from (3. 10), (3. 16), and (3. 18) in a similar manner.
(4.la) ThUS for instance in (3.13)

in which

[
C#(x’)=ko C{h+s{x’+

[

@i(X’) = k. C;h– $jx’ +
J 1“SO, dx “ . (4.lb) r’s”’dx”l (4”9a)
o is replaced by

The corresponding expression for dH~o due to scattering @f’(X’) =ko(c{h+ ~{X’) + U&=(X’)

by an inclined strip at (x, y) of length
(4.9b)

where L$(x’) is given by (4.6a). Similarly, in (3.1)

dl=(dx2+@2)1’2= (l+(W)2)1’2 dx=dx/cosy

J

Xo

(4.2a)
Us dx “+

J
‘Ou~dx’’/cos y= U,~o(Xo) (4.10)

o 0

and gradient where Lo(xo ) is the path length along the rough surface

h’= dh/dx = tany
(42b) from the source at XO to the origin.

The full-wave solutions derived in this section are valid
is given by performing the following coordinate transfor- for
mation into the local (variable) coordinates $, q (the q axis

is normal to the local tangent plane).
–T/2<tI;Y=4.j-y <W/2, –W/2<e@=o~+y <r/2

f=xcosy+ysiny (4.3a) (4.11)

q= –xsiny+ycosy . (4.3b) thus both upward and downward propagating waves with

The incident and scatter angles with respect to the refer-
respect to the reference plane y = O are accounted for in

this analysis. Only those regions of the rough surface that
ence plane y = O, O;, O{ are replaced by the local incident are illuminated by the source or visible to the observer

and scatter angles with respect to the local tangent plane, contribute to the scattered fields. For plane waves inci-
thus

e;+ej= e;– y

OJ~e~ = 0:+ y.

The corresponding angles for medium 1

8P are given by Snell’s law

klsin@’=k Osin6$

klsin O~=kOsinOfl.

Under the transformation (4.3) and (4.4)

C;7q – S;7.$= C;h – $x

dent at an angle d;, the shadow region extends from X! to

xj, where [4]

(4.4a) tany(x~)=h’(x~)= –cot~~ (4.12a)

(Y <h)LJ:Y and and

xj–x{= [h(xj)–h(x~)]/tany( x~). (4.12b)

Similarly, for an observation point in the direction O(,

(4.4b) the region of the rough surface extending from x{ to x; is
not visible to the observer

(4.5)
tany(xf) =h’(x{) = cot O{ (4.13a)

and
U#,~(X’) = ~x koSo$dx’’/cos y (4.6a)

o x{-x(= [h(x~)-h(x/)]/tan(x{). (4.13b)

U$LR(X) = ~xkoSo, dx’’/cos y . (4.6b)
o V. STATIONARY PHASE CONDITIONS AND COUPLING

Thus
AT THE BREWSTER ANGLE

@’(X’) +@’y(X’) =ko(C;h –$x’) +U$L$(X’). (4.7)
In the expression for the scattered surface wave (4.8)

the phase I?’Y(x) is stationary when

The total surface wave due to the illumination of the

rough surface of arbitrary slope by the radiation field is :+iy(x) =ko[(c;h’(x) –Srj)+So,/cosy]~O. (5.1)

therefore
Substitute h’(x,) = tan y, and So. = sin O., into (5.1) to

H,o= --J-
J

L G~vF~~v( 190~,0: )
2L .~

get

‘[sin(y,-O~)+sint?o, ]-+.O . (5.2)
“exp[iko(C~h– S~x’)+iu,L,(x’)] & . (4.8) Cosy~

Hence
In the expression (4.8), the path length over the rough

surface from the origin to the scattering element at
o;ke; – y,~go, . (5.3)

x’, L,(x’), is given by (4.6a) and in the expression for G~\v Thus, as the local angle of incidence d~y approaches the

(3.7), the path length from the origin to the receiver, Brewster angle 19~(R~-+0, /3$~Re (lo.) the phase +i’(x)
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tends to be stationary. However, when the local angle of

incidence O;Y (and not ();) [3] approaches the Brewster

angle Z$V(OO$, 6~7)e0. Thus, the major contributions to

the scattered surface wave do not necessarily come from

the neighborhood of the points where the phase Oiy(x) is

stationary. It should be pointed out that the Kirchoff

approach does not account for coupling between the

radiation fields and the surface waves [3]. In a similar way

it can be shown that for the scattered radiation fields the

phase @fY(x) is stationary when

VI. RANDOM AND PERIODIC ROUGH SURFACES

In order to determine the statistical average of the

scattered surface wave, H,O (4.8), it is necessary to know

the distributions of the random functions, h(x) and h’(x)

= tan y(x). However, for a stationary random process

h(x) and h’(x) are uncorrelated [6]. Thus, the expected

value for H,O is given by

.X(kOC~)sinc[ kOL(SJ–SO$)] (6.1)

can be obtained by invoking the duality relationships

(3.17).

For an N element periodic rough surface of period 2.L

h(x+2L)=h(x), –NL<x<NL (6.6)

the scattered surface wave is obtained by multiplying the

single element scattered wave (– L < x < L) by the N

element array factor

~(00$, Oj) =sin[ NkO($L-SOJL~)]

/sin[ kO(SJL-SO,L~)] (6.’7)

where

The array factor is maximum for

thus

S:= ~ + Re(So~L~/L), (6.9b)

The array factor for the scattered radiation field HO$ is

given by

in which it is assumed for simplicity that L~(x’)Ex’. The q(e{, –&)= FA(eo,,6?j= –e{). (6.10)

one-dimensional characteristic function is Thus it can be obtained from (6.7) by replacing S# by

x(kOCJ) = J@ w(h)exp(i/cOC;h) dh (6,2)
– s{. The scattered radiation fields are therefore mafi.

—m mum for

where w(h) is the distribution function for h(x). For

slightly rough surfaces, y~O and . I

Similarly, the small slope approximation for the variance

of Ho, is given by

21
D{H,O} =IG$VFVV(80,, O;)l ~

f“P[-~~o@lEsoJl

. [X2(I%OC:,–koC&x(koC:)x*(koC~)] dr

(6.4)

in which the symbol * denotes the complex conjugate and

X2 is the two-dimensional characteristic function

xz(koc~–koci)=~m ~rn J41h,~2)
—m —m

“exp[ikoCJ(hl –hz)] dhldhl (6.5)

where W( h ~, hz ) is the joint distribution function of h,=
Jz(xl) and J12=JI(X2) and T=X, -x,. The statistical aver-

age and the variance for the scattered radiation field due

to an incident surface wave HO. are obtained in a similar

manner. Thus, consistent with reciprocity they can be

obtained directly from (6. 1) and (6.4) on making the

substitutions (3. 15). Similarly, the corresponding expres-
sions for the horizontally polarized waves, E~O and Eo~,

(6.11)

VII. CONCLUDING REMARKS

The contribution to the total fields from the first, sec-

ond, and third terms on the right hand side of (2.1) m

(2.3) are the radiation field, the lateral and the surface

waves, respectively. As the observer moves into the shadow

region, the contribution from the first term (the radiation

field) vanishes in a continuous manner [4]. Thus, the

surface waves and the lateral waves that are guided at the

interface between two different media contribute signifi-

cantly to the total fields when the transmitter or receiver

are near the rough interface [3]. In this work the surface

wave excited by an incident radiation field as well as the

scattered radiation fields excited by an incident surface

wave are derived using a full-wave approach [1], [2]. The

Kirchoff approach or the Rayleigh hypothesis for ins-

tance, cannot be applied to this problem [3], [6].

To remove the earlier restrictions on the slope of the

rough surface, [3], a transformation to a variable, loc,d

coordinate system has been used. In addition both c and p

are assumed to be different for y > h and y <h. Both

vertically and horizontally polarized waves are considered

here and the results are also applied to random and

periodic rough surfaces. The solutions are shown to satisfy

duality and reciprocity relations in electromagnetic theory

and they are invariant to coordinate transformations. Since

the full-wave approach accounts for upward and down-
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ward scattering, shadowing effects are also considered in

this work.

It is shown that the phase @iY(x) in (4.5) is stationary

when the local angle of incidence (liY = Oi —y approaches

the Brewster angle. However, at this angle, FVV(OO,, @_+O.

Thus the major contributions to the scattered surface

waves H,O do not necessarily come for the neighborhood

of the stationary phase points.

The full-wave approach presented here may also be

used to determine the coupling of electromagnetic fields

into and out of dielectric waveguides

boundaries.
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Comparative Testing of Leaky Coaxial Cables
for Communications and Guided Radar

DANIEL J, GALE, MEI@ER, IEEE, AND JOHN C. BEAL, biEbfBER, IEEE

Abstmet-Leaky coaxial cables are finding irscmasfng nse in cornrosmi-

cations systems fnvolving rein% tnnnel% raitroa@ and fdgfswaysj and iss

new obstacle detectio~ or guided radar, schem~ for ground transportation

and perimeter surveiffsnce. This paper deseribes the theory and operstion

of a new laboratory testing technique for these leaky cables based on a

novel form of cavity resonator. The teehnfque yields bigfsfy consistent and

repeatable resnfts that nsefnffy zwdst in the prediction of the perfornssssee

of fuff-size systesav, from a simple test on a SSSSSUsample of cable in a

hboratory Setttng.

A.

I. INTRODUCTION

Leaky Coaxial Cables

L EAKY COAXIAL cables are generating increasing

interest as a means of providing continuous-access

guided communications (CAGC) in tunnels and mines,

Manuscript received June 6, 1979; revised April 30, 1980. This work
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and by the Natural Sciences and Engineering Research Councit of
Canada.
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Surrey, Guildford Surrey, EnglandGU25XH.

J. C. Beal is with the Department of Electrical Engineering, Queen’s
University, Kingston Ontario, Canada K7L 3~6.

and in guided ground transportation systems [ 1]– [3]. Many

different types are currently being marketed, or tested

experimentally, and a selection is shown in Fig. 1, with the

designations as used throughout this paper as described in

Table I. Also included is conventional twin feeder, Fig.

1(g), to draw attention to the major characteristics shared

by all the types illustrated. They are all open electromag-

netic waveguides in which the signal energy is guided

along a prescribed linear route, with the fields being

confined both inside the cable and outside it, within its

immediate vicinity, thus enabling signals to be coupled

into immediately adjacent mobile communications units.

With the exception of the twin feeder, all these leaky

cables are coaxial in form and include a partially open
outer conductor.

In all these cases where periodic holes or slots occur,

the spacing is very much less than a wavelength and all

the cables illustrated act as slow-wave open guiding struc-

tures or surface waveguides [4].

B. Guided Radar

A vast amount of work on surface waveguides for

railroad communications has been done in Japan and

elsewhere over many years and some of the earlier work

0018-9480/80/0900-1006$00.75 01980 IEEE


